-
Recent Posts
- More Fun With Combinatorics: A Very Short Post
- The probability that $s$ integers are relatively $r$-prime for a class of probability distributions on the integers
- Fun Polynomial Problem
- On The Product of All Primes Between $N$ and $2N$ Compared to $2^{N}$
- All Harmonic Series Diverge — And a Consequence!
Recent Comments
Archives
Categories
Meta
Monthly Archives: April 2024
More Fun With Combinatorics: A Very Short Post
One of my favorite facts from combinatorics is that $\sum\limits_{0\leq k\leq n}\binom{n}{k} = 2^{n}$. To prove it is simple: Note that $2 = 1 + 1$, and that $\binom{n}{k} = \binom{n}{k}\cdot 1^{k}\cdot 1^{n-k}$, and appeal to binomial theorem: $$\sum_{0\leq k\leq … Continue reading
Posted in Uncategorized
Comments Off on More Fun With Combinatorics: A Very Short Post